177. Photoreduction of Thiosulfate in Semiconductor Dispersions

by Enrico Borgarello, Jean Desilvestro and Michael Grätzel*

Institut de Chimie Physique, Ecole Polytechnique/Fédérale, CH-1015 Lausanne

and Ezio Pelizzetti"

Istituto di Chimica Analitica, Università di Torino, Torino, Italia

(9.11.83)

Summary

Conduction band electrons produced by band gap excitation of TiO_2 -particles reduce efficiently thiosulfate to sulfide and sulfite.

 $2e_{ch}^{-}(TiO_2)+S_2O_3^{2-} \longrightarrow S^{2-}+SO_3^{2-}$

This reaction is confirmed by electrochemical investigations with polycrystalline $TiO₂$ -electrodes. The valence band process in alkaline $TiO₂$ -dispersions involves oxidation of $S_2O_3^{2-}$ to tetrathionate which quantitatively dismutates into sulfite and thiosulfate, the net reaction being:

$$
2h^+(\text{TiO}_2) + 0.5 S_2O_3^{2-} + 1.5 H_2O \longrightarrow SO_3^{2-} + 3 H^+
$$

This photodriven disproportionation of thiosulfate into sulfide and sulfite:

the net reaction being:
\n
$$
h^+(TiO_2) + 0.5 S_2O_3^{2-} + 1.5 H_2O
$$
 \longrightarrow $SO_3^{2-} + 3 H$
\niven disproportionation of thisulfate into sulfide an
\n $1.5 H_2O + 1.5 S_2O_3^{2-}$ \longrightarrow $2 SO_3^{2-} + S^{2-} + 3 H^+$

should be of great interest for systems that photochemically split hydrogen sulfide into hydrogen and sulfur.

Introduction. - We have shown in a previous investigation [**11** that illuminations of aqueous CdS/RuO₂-suspensions by visible light leads to efficient cleavage of hydrogen sulfide into H_2 and S. The mechanism involves band gap excitation of the CdS particle followed by reaction of conduction band electrons with water produce to H_2 .

$$
2e_{cb}^{-} + 2H_2O \longrightarrow H_2 + 2OH^{-}
$$
 (1)

Valence band holes oxidize sulfide to sulfur.

$$
12A ACTA - Vol. 66, Fasc. 6 (1983) - Nr. 177
$$

sulfide to sulfur.

$$
2h^+ + S^2 = \longrightarrow S
$$
 (2)
and this has been confirmed [31 that in the presence

Subsequently, we found **[3],** and this has been confirmed **[3],** that in the presence **of** sulfite *Reaction* 2 is followed by *Reaction 3.* e sulfide to sulfur.
 $2h^+ + S^{2-} \longrightarrow S$ (2)

and this has been confirmed [3], that in the presence

d by *Reaction 3*.
 $S + SO_3^{2-} \longrightarrow S_2O_3^{2-}$ (3)

cess is therefore *Reaction 4*

$$
S + SO_3^2 \longrightarrow S_2O_3^2 \tag{3}
$$

The net valence-band process is therefore *Reaction 4*

$$
2 h^{+} + S^{2-} + SO_{3}^{2-} \longrightarrow S_{2}O_{3}^{2-}, (E^{\circ} = -0.72 V. NHE)
$$
 (4)

and the overall reaction corresponds to the photogeneration of H_2 and $S_2O_3^{2-}$ *via Reaction 5.* \sec -band process is therefore *Reaction 4*
 $+ + S^2 + SO_3^2$ \rightarrow $S_2O_3^2$, $(E^\circ = -0.72 \text{ V. NHE})$ (4)

reaction corresponds to the photogeneration of H₂ and $S_2O_3^2$ *via*
 S^2 $+ SO_3^2$ $+ 2 H_2O \xrightarrow{2 h \text{ V}} S_2O_3^2$

$$
S^{2-} + SO_3^{2-} + 2 H_2O \xrightarrow{2 h v} S_2O_3^{2-} + 2 OH^- + H_2
$$
 (5)

While *Reaction 5* under standard condition (pH 14, 298 °K) stores only 0.11 eV of free energy per absorbed photon, as compared to 0.36 eV for the cleavage of H_2S , it has the advantage over the latter process of giving high yields of H_2 [2] $[3]$ without formation of insduble products. We were intrigued, therefore, by the idea of using it as the H_2 -generating part in a hydrogen sulfide cleavage cycle and attempted to identify a photosystem capable of reducing $S_2O_3^{2-}$ back to S^{2-} and SO_3^{2-}

Experimental. - 'Ti02-P25 *(Anatase,* 55 m2/g) was a kind gift of Dr. *Peter Kleinschmidt, Degussa* GmbH. Hanau, West Germany. Deionized water was doubly distilled from a quartz apparatus. All other chemicals were at least reagent grade and used as supplied.

Irradiations were carried out with a *Hanau* suntest lamp equipped with a glass filter to remove wavelengths below 340 nm. The global irradiance in the wavelength domain between 300 and 830 nm is 100 mW/cm2, the spectral distribution of the intensity reflecting AM1 solar radiation. Solution volume was invariably 40 ml, placed in cylindrical glass vials (irradiated surface approx. 15 cm^2) equipped with a septum for **GC** analysis of the gas. Prior to irradiation samples were deoxygenated by bubbling with N₂ or Ar. All photolysis experiment are carried out in 1N NaOH, 10^{-2} M S₂O₃⁻ and 2 g/l TiO₂.

Electrochemical experiments employed polycrystalline $TiO₂$ -electrodes prepared from Ti-sheets (Siber-Hegner Raw Materials, 99.99%) spot-welded to a Ti-wire. For the fabrication of TiO₂-cathodes a Ti-sheet $(15 \times 1 \times 0.02 \text{ cm}^3)$ was spiralled to form a cylinder. The photo-anode had a size of $1 \times 1 \times 0.05$ cm³. Ti was washed subsequently with CH₂Cl₂, EtOH and H₂O and then etched for 30 s in an aq. solution of HF $(4\%, w/w)$ and $HNO₃$ (30%, w/w). After rinsing with H₂O and drying in air, the electrodes were heated at 780" for 5 h in a stream of *02* (flow rate 10-15 ml/min.). The thickness of the grey Ti02-layer was estimated from the weight difference before and after heating to be approx. 4 um. One side of the photo-anode was spray-insulated.

Conventional two- and three-electrode cells *(Pyrex)* were used for galvanostatic and potentiostatic experiments. The solution *(ca.* 20 ml volume) was agitated by a magnetic stirrer. A Ti-wire coated with RuO₂ according to *Galizzioli et al.* [4] and a commercial calomel reference electrode **(S.C.E.)** were separated from the working electrode compartment by sintered glass frits.

The potentiostats *Wenking POS* 76 and *Pine RDE* 6 were used in connection with a *Watanabe* xy-recorder or a *Metrohm* single-channel recorder. Irradiations were carried out with a 250-W tung-

sten-halogen lamp *(Oriel)* equipped with a 12-cm water filter and a *Corning CS 7-59* filter (390-nm band-filter). The light beam was focused onto the TiO₂-electrode and the intensity measured with a *Yellow Springs Instrument Kettering Model 65A* radiometer.

02 was measured in solution by a *Clark* electrode from *Instrumentation Laboratory* (02-meter *376).* H2 was detected similarly by a membrane covered gas detector *YSZ 4004* from *Yellow Springs Instruments.* The Pt-disc was cleaned and platinized according to [5]. The H₂-oxidation was performed in 1.5~ KCl at 0.5 V *vs.* Ag/AgCI. The *Clark* electrodes were calibrated for every solution by injecting appropriate amounts of air- or H_2 -saturated water into the liquid phase. The temperature was kept constant during *02-* and H2-analysis by immersing the electrochemical cell into a thermostated water-bath.

S₂O₃⁻ and SO₃⁻ were analyzed quantitatively by ion-exchange chromatography on a *Wescan* 261 ion analyzer equipped with a *Wescan 213 A* detector and a *Wescan Standard* column *269-001.* Phtalate buffer (4 mm, pH 4.8) was used as an eluant at a flow rate of 4.5 ml/min. BaCl₂ was used in addition to test for SO_4^2 ⁻- and $S_2O_6^2$ ⁻-ions. (The latter dismutates in hot HCl to SO_4^2 ⁻ and SO_2 .)

S2- -concentrations were determined by potentiometric titration with Ag+ on a *Metrohm Titroprocessor 636 and Dosimat E635 using a Ag₂S-indicator electrode <i>(Oriel 94-16)*. SO_1^{2-} was analyzed by differential pulse polarography *(Metrohm Polarorecord 626)* in 1N HCl under an atmosphere of N₂. The reduction peak occurred at -0.32 V *vs.* Ag/AgCl (3M KCl). The peak at -0.17 V was due to H₂S and the height of the peak always agreed with the S^2 -concentration found by titration.

Results. - 1. *Irradiation of TiO₂-dispersions.* Illumination of alkaline TiO₂suspensions in presence of $S_2O_3^{2-}$ leads to consumption of thiosulfate and appearance of S^{2-} and SO_3^{2-} . A quantitative illustration of this effect is given in *Fig. 1*. After 20 h of illumination, 4.8×10^{-3} M SO $3\overline{ }$ and 2.4×10^{-3} M S²⁻-ions are produced while 3.6×10^{-3} **M** $S_2O_3^{2-}$ have been consumed. Note that the 2:1 stoichiometric ratio of SO_3^{2-} to S^{2-} is maintained during the whole irradiation time. Tests for the presence of SO_4^{2-} - and $S_2O_6^{2-}$ -ions in irradiated samples gave negative results. The only products obtained from the photoreaction are S^{2-} - and SO_3^{2-} ions apart from trace amounts of H_2 which was found sometimes after extensive illumination. Blank experiments established that both $TiO₂$ and light are required

Fig. 1. Photoreduction of $S_2O_3^2$ in TiO₂-dispersions (pH 14, 30°), temporal evolution of S^{2-} - and SO_3^{2-} *concentrations*

to afford $S_2O_3^2$ -reduction. Thus, sunlamp irradiation of alkaline thiosulfate solution produced no detectable sulfide after 20 h exposure time. Similarly, no reaction occurs in TiO₂/S₂O₃⁻-dispersions (pH 14) in the dark.

2. Electrochenrical Experiments with Polycrystalline Ti02-electrodes. Fig. 2 shows current-potential curves obtained with TiO₂-electrodes in the dark and under light in 1 **M** NaOH and 1 **M** NaOH in the presence of 10^{-1} **M** Na₂S₂O₃. If no thiosulfate is present, one observes H_2 -generation at $E < -1.3$ V (S.C.E). The overvoltage for H₂-production at -0.1 mA/cm² is *ca.* 200 mV larger than that observed with Ti0,-electrodes prepared according to [6] *(600",* 30 min). This is ascribed to an increase in the thickness of the $TiO₂-layer$ (4 instead of *ca.* 0.5 μ m) when our procedure of electrode preparation is applied. **A** photocurrent is observed at potentials positive of the flat-band potential of $TiO₂$. In the presence of $S₂O₃²$ the cathodic current is shifted to more positive potentials (curve *B)* but the anodic photocurrent is not affected. In situ analysis of H_2 during galvanostatic electrolysis

Fig.2. Photocurrent (----) and dark current (---) for polycrystalline TiO₂-electrodes (Scan rate 2 mV s⁻¹, light intensity 170 mW cm⁻²; A: 1_M NaOH, B: 1_M NaOH, 0.1_M Na₂S₂O₃)

revealed that 41 ± 6 % of the current corresponds to H₂O-reduction. The major fraction of the current (48 \pm 2%) is due to thiosulfate reduction, and we find the stoichiometry :

$$
S_2O_3^{2-} + 2e_{cb}^- \longrightarrow S^{2-} + SO_3^{2-} \tag{6}
$$

for this conduction band reaction¹). *Fig. 3* shows that the current efficiency for $S_2O_3^{2-}$ -reduction is decreased by lowering the $S_2O_3^{2-}$ -concentration and increasing the current density.

The anodic reaction in 1 M NaOH at illuminated $TiO₂$ -electrodes (conditions 0.0 V $\text{vs. S.C.E., 0.4 mA cm}^{-2}$, 20 ml of electrolyte) was quantitatively oxidation of H₂O. In the presence of 0.01 M or 0.05 $S_2O_3^{2-}$ the current efficiency for O_2 formation was decreased to 61 and 38%, respectively, indicating significant hole transfer to $S_2O_3^{2-}$. O_2 -generation is completely prevented when TiO_2 -electrodes were illuminated in the presence of S^{2-} or SO_3^{2-} (both 0.01 m). However, the photocurrent-potential curve is not affected by these ions. We found that O_2 oxidizes both S^{2-} or SO_3^{2-} but not $S_2O_3^{2-}$ within seconds or minutes under our conditions. This reaction could lead to a rapid consumption of O_2 formed during photoelectrolysis. One concludes from these observations that S^{2-} and SO_{3-}^{2-} , though acting as efficient hole scavengers at n-CdS **[7]** and n-WO, (pH 1 [S]) electrodes are surprisingly inactive towards $TiO₂$ -valence band holes in alkaline solution. *Frank* & *Bard* [9] inferred from the absence of current doubling at illuminated TiO₂-electrodes (0.1 M NaOH, $1 \text{ M}S^{2-}$) that no holes are transferred from TiO₂ to S^{2-} . This agrees with our finding that no H_2 is produced under UV illumination of TiO₂-dispersions in 0.1 M $Na₂S$ (pH 14).

Fig.3. *Galvanostatic reduction of* $S_2O_1^{2-}$ *in 20 ml 1M NaOH.* S_1^{2-} *and* SO_1^{2-} *as a function of the electric charge passed through the cell* (A: 0.1_{M} Na₂S₂O₃, i= -0.017 mA cm⁻²; B: 0.01_{M} Na₂S₂O₃, i= $- 0.017$ mA cm⁻²; C: 0.01 M Na₂S₂O₃, i= $- 0.65$ mA cm⁻²)

¹) The remaining 11% of the current might be due to systematic analytical errors or to small amounts of *02* which leaked into the cell during electrolysis.

Discussion. - The photogeneration of S^{2-} and SO_3^{2-} in alkaline TiO₂/thiosulfate dispersions can be accounted for by reaction of e_{cb}^- with $S_2O_3^{2-}$ according to *Reaction* 6, accompanied by hole transfer to thiosulfate CHIMICA ACTA – Vol. 66, Fasc. 6 (1983) – Nr. 177

otogeneration of S² – and SO₃⁻ in alkaline TiO₂/thio-

accounted for by reaction of e_{cb}^- with S₂O₃⁻ according

1 by hole transfer to thiosulfate

2 S₂O companied by hole transfer to thiosulfate
 $2 S_2 O_3^2^- + 2 h^+ \longrightarrow S_4 O_6^2^-$

e is known to undergo disproportionation in alkaline

1.5 H₂O + S₄O₆⁻ $\longrightarrow SO_3^{2-} + 1.5 S_2 O_3^{2-} + 6 H^+$

he not valance hand precess:

$$
2 S_2 O_3^{2-} + 2 h^+ \longrightarrow S_4 O_6^{2-} \tag{7}
$$

Tetrathionate is known to undergo disproportionation in alkaline solution:

$$
1.5 H2O + S4O62- \longrightarrow SO32- + 1.5 S2O32- + 6 H+
$$
 (8)

which gives for the net valence band process:

is known to undergo disproportionation in alkaline solution:
\n
$$
.5 H_2O + S_4O_6^{2-} \longrightarrow SO_3^{2-} + 1.5 S_2O_3^{2-} + 6 H^+
$$
\n
$$
= net valence band process:
$$
\n
$$
1.5 H_2O + 2h^+ + 0.5 S_2O_3^{2-} \longrightarrow SO_3^{2-} + 3 H^+
$$
\n
$$
(9)
$$

and for the overall photoreaction

$$
1.5 \text{ H}_2\text{O} + 1.5 \text{ S}_2\text{O}_3^{2-} \xrightarrow{\text{h } v} 2 \text{ SO}_3^{2-} + \text{S}^{2-} + 3 \text{ H}^+ \tag{10}
$$

Reaction 10 is energy-storing the standard free enthalpy (pH 14, 298°K) being +0.38 eV. The experimental finding that for 1.5 moles of $S_2O_3^{2-}$ consumed, there are 2 moles of SO_3^{2-} and 1 mole of S^{2-} formed agrees well with the stoichiometry of this equation.

The electrochemical reduction of $S_2O_3^{2-}$ to S^{2-} and SO_3^{2-} has been previously studied by *Konopik & Holzinger* [10] on Hg, Sn and Pt. Hg-electrodes require the highest overpotential and the reduction seems to involve Na-atoms. On Pt, the main reaction is H₂O-reduction. The overvoltage for H₂-generation is sufficiently high on TiO₂ and Sn²) to observe increased cathodic currents due to $S_2O_3^{2-}$ -reduction and establish their catalytic intervention in the latter process.

The fact that H₂ is generated on TiO₂-electrodes in parallel with $S_2O_3^{2-}$ -reduction indicates that H-atoms are the primary intermediates formed from the reaction of e_{cb}^- with H₂O which recombine to give H₂ or reduce $S_2O_3^{2-}$ to S^{2-} and SO_3^{2-} . Such a competitive process is in agreement with the observed decline of the current conversion efficiency with decreasing $S_2O_3^{2-}$ -concentration and increasing current density. That no H_2 is produced on TiO₂-powders is a very interesting observation which confirms further such a mechanism. The reaction due to the large surface area proceeds here at a very low current density and therefore small H surface concentration, rendering recombination to H_2 improbable. We encounter here an instructive example of how the efficiency of a catalytic process can increase when electrodes are substituted by particle suspensions.

²) We confirmed the finding of *Konopik & Holzinger* [10] that Sn has good electrocatalytic properties for $S_2O_3^2$ -reduction with Sn disk-electrodes prepared from Sn-rods *(Fluka, 99.999%)*.

The photoinduced dismutation of $S_2O_3^{2-}$ into SO_3^{2-} and S^{2-} , discovered here, could be very useful for systems that attempt to photogenerate H_2 from H_2S solutions. Fig. 4 describes the features of a two-compartment system where H_2 is generated in the CdS/RuO₂-containing halfcell and $S²⁻$ concomitantly oxidized to $S_2O_3^2$. The latter is transferred in a second halfcell containing TiO₂-particles where the dismutation of $S_2O_3^{2-}$ is driven by light. The overall process

$$
3 H_2O + S^{2-} \xrightarrow{h \, v} SO_3^{2-} + 3 H_2
$$
 (11)

$$
\Delta_{r}G_{298}^{^{\circ}} = +1.4 \text{ eV} = +32 \text{ kcal/mol}
$$

produces 3 moles of H₂ instead of 1 mole obtained from the simple cleavage of H_2 S and stores a significant amount of light energy. One additional mole of H_2 could be obtained from the photooxidation of SO_3^{2-} to SO_4^{2-} . Further advantages of this system are that there is no sulfur or $S_2O_3^2$ -accumulation, rendering the photoreaction very efficient.

The authors are indebted to the *Swiss National Science Foundation* and *Ciba-Geigy* for financial support. We are grateful to *Francine Duriaux* for her valuable assistance in carrying out the experiments.

Fig. 4. *Schematic illustration of H₂S-decomposition by two photosystems, linked through the* $S^2O_3^{3-1}$ S_2^{2-} /SO $_2^{2-}$ *redox system*

REFERENCES

- [11 *E. Borgurello, K. Kalyanasundaram, M. Gratzel* & *E. Pelizzetti,* Helv. Chim. Acta *IS,* 243 (1982).
- [2] *E. Borgurello, E Pelizzetti, W. Erbs* & *M. Grutzel,* Nouv. *J.* Chim. **7,** 195 (1983).
- [3] *D. H. M. W. Thewissen, K. Timmer, M. Eeuwhorst-Reinten, A. H. A. Tinnemans* & *A. Mackor,* Nouv. J. Chim. **7,** 191 (1983).
- [4] *D. Gulizzioli, F. Tuntardini* & *S. Trasatti,* J. **Appl.** Electrochem. *4,* 57 (1974).
- *[S] H. Griiniger, B. .Sulzberger* & *G. Calzaferri,* Helv. Chim. Acta *61,* 2375 (1978).
- [6] *K.J. Hartig, J. Lichtscheidl & N. Getoff, Z. Naturforsch. A35, 0233 (1980).*
- [7] *A. B. Ellis, S. W. Kaiser* & *M. S. Wrighton, J.* Am. Chem. SOC. *98,* 1635 (1976); ibid. *94,* 6418 (1976); ibid. *94,* 6855 (1976); *G. Hodes, J. Manassen* & *D. Cohen,* Nature *261,* 403 (1976); *B. Miller* & *A. Heller,* Nature *262,* 680 (1976); *M. Neumunn-Spullurt* & *K. Kulyanusundarum,* Ber. Bunsenges. Phys. Chem. 85, 1112 (1981).
- [S] *J. Desilvestro,* unpublished results.
- [9] S. *N. Frank &A. J. Bard,* J. Am. Chem. SOC. *99,* 4667 (1977).
- [10] *N. Konopik & F. Holzinger, Monatsh. Chem. 85, 140 (1954); <i>N. Konopik, Monatsh. Chem. 84,* 1243 (1953).