177. Photoreduction of Thiosulfate in Semiconductor Dispersions

by Enrico Borgarello, Jean Desilvestro and Michael Grätzel*

Institut de Chimie Physique, Ecole Polytechnique/Fédérale, CH-1015 Lausanne

and Ezio Pelizzetti*

Istituto di Chimica Analitica, Università di Torino, Torino, Italia

(9.II.83)

Summary

Conduction band electrons produced by band gap excitation of TiO_2 -particles reduce efficiently thiosulfate to sulfide and sulfite.

 $2e_{cb}^{-}(TiO_2) + S_2O_3^{2-} \longrightarrow S^{2-} + SO_3^{2-}$

This reaction is confirmed by electrochemical investigations with polycrystalline TiO_2 -electrodes. The valence band process in alkaline TiO_2 -dispersions involves oxidation of $S_2O_3^{2-}$ to tetrathionate which quantitatively dismutates into sulfite and thiosulfate, the net reaction being:

$$2h^{+}(TiO_{2}) + 0.5 S_{2}O_{3}^{2-} + 1.5 H_{2}O \longrightarrow SO_{3}^{2-} + 3 H^{+}$$

This photodriven disproportionation of thiosulfate into sulfide and sulfite:

$$1.5 \text{ H}_2\text{O} + 1.5 \text{ S}_2\text{O}_3^{2-} \xrightarrow{hv} 2 \text{ SO}_3^{2-} + \text{S}^{2-} + 3 \text{ H}^+$$

should be of great interest for systems that photochemically split hydrogen sulfide into hydrogen and sulfur.

Introduction. – We have shown in a previous investigation [1] that illuminations of aqueous CdS/RuO₂-suspensions by visible light leads to efficient cleavage of hydrogen sulfide into H_2 and S. The mechanism involves band gap excitation of the CdS particle followed by reaction of conduction band electrons with water produce to H_2 .

$$2e_{cb}^{-} + 2H_2O \longrightarrow H_2 + 2OH^{-}$$
 (1)

Valence band holes oxidize sulfide to sulfur.

$$2h^+ + S^{2-} \longrightarrow S \tag{2}$$

Subsequently, we found [3], and this has been confirmed [3], that in the presence of sulfite *Reaction 2* is followed by *Reaction 3*.

$$S + SO_3^2 \longrightarrow S_2O_3^2$$
(3)

The net valence-band process is therefore Reaction 4

$$2 h^{+} + S^{2-} + SO_{3}^{2-} \longrightarrow S_{2}O_{3}^{2-}, (E^{\circ} = -0.72 \text{ V. NHE})$$
 (4)

and the overall reaction corresponds to the photogeneration of H_2 and $S_2O_3^{2-}$ via Reaction 5.

$$S^{2-} + SO_3^{2-} + 2 H_2O \xrightarrow{2 h v} S_2O_3^{2-} + 2 OH^- + H_2$$
 (5)

While *Reaction 5* under standard condition (pH 14, 298 °K) stores only 0.11 eV of free energy per absorbed photon, as compared to 0.36 eV for the cleavage of H₂S, it has the advantage over the latter process of giving high yields of H₂ [2] [3] without formation of insoluble products. We were intrigued, therefore, by the idea of using it as the H₂-generating part in a hydrogen sulfide cleavage cycle and attempted to identify a photosystem capable of reducing $S_2O_3^{2-}$ back to S^{2-} and SO_3^{2-} .

Experimental. - TiO₂-P25 (Anatase, 55 m^2/g) was a kind gift of Dr. Peter Kleinschmidt, Degussa GmbH, Hanau, West Germany. Deionized water was doubly distilled from a quartz apparatus. All other chemicals were at least reagent grade and used as supplied.

Irradiations were carried out with a *Hanau* suntest lamp equipped with a glass filter to remove wavelengths below 340 nm. The global irradiance in the wavelength domain between 300 and 830 nm is 100 mW/cm², the spectral distribution of the intensity reflecting AM1 solar radiation. Solution volume was invariably 40 ml, placed in cylindrical glass vials (irradiated surface approx. 15 cm²) equipped with a septum for GC analysis of the gas. Prior to irradiation samples were deoxygenated by bubbling with N₂ or Ar. All photolysis experiment are carried out in 1N NaOH, $10^{-2}M$ S₂O₃²⁻ and 2 g/l TiO₂.

Electrochemical experiments employed polycrystalline TiO₂-electrodes prepared from Ti-sheets (*Siber-Hegner Raw Materials*, 99.99%) spot-welded to a Ti-wire. For the fabrication of TiO₂-cathodes a Ti-sheet $(15 \times 1 \times 0.02 \text{ cm}^3)$ was spiralled to form a cylinder. The photo-anode had a size of $1 \times 1 \times 0.05 \text{ cm}^3$. Ti was washed subsequently with CH₂Cl₂, EtOH and H₂O and then etched for 30 s in an aq. solution of HF (4%, w/w) and HNO₃ (30%, w/w). After rinsing with H₂O and drying in air, the electrodes were heated at 780° for 5 h in a stream of O₂ (flow rate 10-15 ml/min.). The thickness of the grey TiO₂-layer was estimated from the weight difference before and after heating to be approx. 4 µm. One side of the photo-anode was spray-insulated.

Conventional two- and three-electrode cells (*Pyrex*) were used for galvanostatic and potentiostatic experiments. The solution (*ca.* 20 ml volume) was agitated by a magnetic stirrer. A Ti-wire coated with RuO_2 according to *Galizzioli et al.* [4] and a commercial calomel reference electrode (S.C.E.) were separated from the working electrode compartment by sintered glass frits.

The potentiostats Wenking POS 76 and Pine RDE 6 were used in connection with a Watanabe xy-recorder or a Metrohm single-channel recorder. Irradiations were carried out with a 250-W tung-

1828

sten-halogen lamp (Oriel) equipped with a 12-cm water filter and a Corning CS 7-59 filter (390-nm band-filter). The light beam was focused onto the TiO₂-electrode and the intensity measured with a Yellow Springs Instrument Kettering Model 65A radiometer.

 O_2 was measured in solution by a Clark electrode from Instrumentation Laboratory (O_2 -meter 376). H₂ was detected similarly by a membrane covered gas detector YSI 4004 from Yellow Springs Instruments. The Pt-disc was cleaned and platinized according to [5]. The H₂-oxidation was performed in 1.5M KCl at 0.5 V vs. Ag/AgCl. The Clark electrodes were calibrated for every solution by injecting appropriate amounts of air- or H₂-saturated water into the liquid phase. The temperature was kept constant during O₂- and H₂-analysis by immersing the electrochemical cell into a thermostated water-bath.

 $S_2O_3^{2-}$ and SO_4^{2-} were analyzed quantitatively by ion-exchange chromatography on a Wescan 261 ion analyzer equipped with a Wescan 213 A detector and a Wescan Standard column 269-001. Phtalate buffer (4 mM, pH 4.8) was used as an eluant at a flow rate of 4.5 ml/min. BaCl₂ was used in addition to test for SO_4^{2-} and $S_2O_6^{2-}$ -ions. (The latter dismutates in hot HCl to SO_4^{2-} and SO_2 .)

 S^{2-} -concentrations were determined by potentiometric titration with Ag⁺ on a Metrohm Titroprocessor 636 and Dosimat E635 using a Ag₂S-indicator electrode (Oriel 94-16). SO₃²⁻ was analyzed by differential pulse polarography (Metrohm Polarorecord 626) in 1N HCl under an atmosphere of N₂. The reduction peak occurred at -0.32 V vs. Ag/AgCl (3m KCl). The peak at -0.17 V was due to H₂S and the height of the peak always agreed with the S²⁻-concentration found by titration.

Results. - 1. Irradiation of TiO_2 -dispersions. Illumination of alkaline TiO_2suspensions in presence of $S_2O_3^{-1}$ leads to consumption of this sufface and appearance of S^{2-} and SO_3^{2-} . A quantitative illustration of this effect is given in Fig. 1. After 20 h of illumination, 4.8×10^{-3} M SO_3^{2-} and 2.4×10^{-3} M S^{2-} -ions are produced while 3.6×10^{-3} M $S_2O_3^{2-}$ have been consumed. Note that the 2:1 stoichiometric ratio of SO_3^{2-} to S^{2-} is maintained during the whole irradiation time. Tests for the presence of SO_4^{2-} and $S_2O_6^{2-}$ -ions in irradiated samples gave negative results. The only products obtained from the photoreaction are S^{2-} and SO_3^{2-} ions apart from trace amounts of H₂ which was found sometimes after extensive illumination. Blank experiments established that both TiO₂ and light are required

Fig. 1. Photoreduction of $S_2O_3^{-1}$ in TiO₂-dispersions (pH 14, 30°), temporal evolution of S^{2-1} and SO_3^{2-1} concentrations

to afford $S_2O_3^{2-}$ -reduction. Thus, sunlamp irradiation of alkaline thiosulfate solution produced no detectable sulfide after 20 h exposure time. Similarly, no reaction occurs in TiO₂/S₂O₃²⁻-dispersions (pH 14) in the dark.

2. Electrochemical Experiments with Polycrystalline TiO₂-electrodes. Fig. 2 shows current-potential curves obtained with TiO₂-electrodes in the dark and under light in 1 M NaOH and 1 M NaOH in the presence of 10^{-1} M Na₂S₂O₃. If no thiosulfate is present, one observes H₂-generation at E < -1.3 V (S.C.E). The overvoltage for H₂-production at -0.1 mA/cm² is ca. 200 mV larger than that observed with TiO₂-electrodes prepared according to [6] (600°, 30 min). This is ascribed to an increase in the thickness of the TiO₂-layer (4 instead of ca. 0.5 µm) when our procedure of electrode preparation is applied. A photocurrent is observed at potentials positive of the flat-band potential of TiO₂. In the presence of S₂O₃² – the cathodic current is shifted to more positive potentials (curve B) but the anodic photocurrent is not affected. In situ analysis of H₂ during galvanostatic electrolysis

Fig.2. Photocurrent (----) and dark current (----) for polycrystalline TiO₂-electrodes (Scan rate 2 mV s⁻¹, light intensity 170 mW cm⁻²; A: 1M NaOH, B: 1M NaOH, 0.1M Na₂S₂O₃)

revealed that $41\pm6\%$ of the current corresponds to H₂O-reduction. The major fraction of the current ($48\pm2\%$) is due to thiosulfate reduction, and we find the stoichiometry:

$$S_2O_3^{2-} + 2e_{cb}^- \longrightarrow S^{2-} + SO_3^{2-}$$
 (6)

for this conduction band reaction¹). Fig. 3 shows that the current efficiency for $S_2O_3^{2-}$ -reduction is decreased by lowering the $S_2O_3^{2-}$ -concentration and increasing the current density.

The anodic reaction in 1 M NaOH at illuminated TiO2-electrodes (conditions 0.0 V vs. S.C.E., 0.4 mA cm⁻², 20 ml of electrolyte) was quantitatively oxidation of H₂O. In the presence of 0.01 M or 0.05 $S_2O_3^{2-}$ the current efficiency for O₂formation was decreased to 61 and 38%, respectively, indicating significant hole transfer to $S_2O_3^{2-}$. O_2 -generation is completely prevented when TiO₂-electrodes were illuminated in the presence of S^{2-} or SO_3^{2-} (both 0.01 m). However, the photocurrent-potential curve is not affected by these ions. We found that O₂ oxidizes both S^{2-} or SO_3^{2-} but not $S_2O_3^{2-}$ within seconds or minutes under our conditions. This reaction could lead to a rapid consumption of O₂ formed during photoelectrolysis. One concludes from these observations that S^{2-} and SO_{2-}^{2-} . though acting as efficient hole scavengers at n-CdS [7] and n-WO₃ (pH 1 [8]) electrodes are surprisingly inactive towards TiO2-valence band holes in alkaline solution. Frank & Bard [9] inferred from the absence of current doubling at illuminated TiO₂-electrodes (0.1 M NaOH, 1 MS^{2-}) that no holes are transferred from TiO_2 to S^{2-} . This agrees with our finding that no H₂ is produced under UV illumination of TiO₂-dispersions in 0.1 M Na₂S (pH 14).

Fig.3. Galvanostatic reduction of $S_2O_3^{2-}$ in 20 ml 1 M NaOH. S^{2-} and SO_3^{2-} as a function of the electric charge passed through the cell (A: 0.1 M Na₂S₂O₃, i = -0.017 mA cm⁻²; B: 0.01 M Na₂S₂O₃, i = -0.017 mA cm⁻²; C: 0.01 M Na₂S₂O₃, i = -0.65 mA cm⁻²)

The remaining 11% of the current might be due to systematic analytical errors or to small amounts of O₂ which leaked into the cell during electrolysis.

Discussion. - The photogeneration of S^{2-} and SO_3^{2-} in alkaline TiO₂/thiosulfate dispersions can be accounted for by reaction of e_{cb}^- with $S_2O_3^{2-}$ according to *Reaction 6*, accompanied by hole transfer to thiosulfate

$$2 S_2 O_3^{2-} + 2 h^+ \longrightarrow S_4 O_6^{2-}$$
 (7)

Tetrathionate is known to undergo disproportionation in alkaline solution:

$$1.5 \text{ H}_2\text{O} + \text{S}_4\text{O}_6^{2-} \longrightarrow \text{SO}_3^{2-} + 1.5 \text{ S}_2\text{O}_3^{2-} + 6 \text{ H}^+$$
(8)

which gives for the net valence band process:

$$1.5 \text{ H}_2\text{O} + 2 \text{ h}^+ + 0.5 \text{ S}_2\text{O}_3^{2-} \longrightarrow \text{ SO}_3^{2-} + 3 \text{ H}^+$$
(9)

and for the overall photoreaction

$$1.5 H_2O + 1.5 S_2O_3^2 - \frac{hv}{2} > 2 SO_3^2 + S^2 + 3 H^+$$
(10)

Reaction 10 is energy-storing the standard free enthalpy (pH 14, 298°K) being +0.38 eV. The experimental finding that for 1.5 moles of $S_2O_3^{2-}$ consumed, there are 2 moles of SO_3^{2-} and 1 mole of S^{2-} formed agrees well with the stoichiometry of this equation.

The electrochemical reduction of $S_2O_3^{2-}$ to S^{2-} and SO_3^{2-} has been previously studied by *Konopik & Holzinger* [10] on Hg, Sn and Pt. Hg-electrodes require the highest overpotential and the reduction seems to involve Na-atoms. On Pt, the main reaction is H₂O-reduction. The overvoltage for H₂-generation is sufficiently high on TiO₂ and Sn²) to observe increased cathodic currents due to $S_2O_3^{2-}$ -reduction and establish their catalytic intervention in the latter process.

The fact that H_2 is generated on TiO₂-electrodes in parallel with $S_2O_3^{2-}$ -reduction indicates that H-atoms are the primary intermediates formed from the reaction of e_{cb}^- with H_2O which recombine to give H_2 or reduce $S_2O_3^{2-}$ to S^{2-} and SO_3^{2-} . Such a competitive process is in agreement with the observed decline of the current conversion efficiency with decreasing $S_2O_3^{2-}$ -concentration and increasing current density. That no H_2 is produced on TiO₂-powders is a very interesting observation which confirms further such a mechanism. The reaction due to the large surface area proceeds here at a very low current density and therefore small H surface concentration, rendering recombination to H_2 improbable. We encounter here an instructive example of how the efficiency of a catalytic process can increase when electrodes are substituted by particle suspensions.

²) We confirmed the finding of Konopik & Holzinger [10] that Sn has good electrocatalytic properties for S₂O₂²⁻-reduction with Sn disk-electrodes prepared from Sn-rods (Fluka, 99.999%).

The photoinduced dismutation of $S_2O_3^{2-}$ into SO_3^{2-} and S^{2-} , discovered here, could be very useful for systems that attempt to photogenerate H_2 from H_2S -solutions. *Fig. 4* describes the features of a two-compartment system where H_2 is generated in the CdS/RuO₂-containing halfcell and S^{2-} concomitantly oxidized to $S_2O_3^{2-}$. The latter is transferred in a second halfcell containing TiO₂-particles where the dismutation of $S_2O_3^{2-}$ is driven by light. The overall process

$$3 H_2O + S^{2-} \xrightarrow{hv} SO_3^{2-} + 3 H_2$$
 (11)

$$\Delta_{\rm r}G_{298}^{\circ} = +1.4 \text{ eV} = +32 \text{ kcal/mol}$$

produces 3 moles of H_2 instead of 1 mole obtained from the simple cleavage of H_2S and stores a significant amount of light energy. One additional mole of H_2 could be obtained from the photooxidation of SO_3^{2-} to SO_4^{2-} . Further advantages of this system are that there is no sulfur or $S_2O_3^{2-}$ -accumulation, rendering the photoreaction very efficient.

The authors are indebted to the Swiss National Science Foundation and Ciba-Geigy for financial support. We are grateful to Francine Duriaux for her valuable assistance in carrying out the experiments.

Fig.4. Schematic illustration of H_2S -decomposition by two photosystems, linked through the $S^2O_3^{-7}/S_2^{-7}/SO_3^{-7}$ redox system

REFERENCES

- [1] E. Borgarello, K. Kalyanasundaram, M. Grätzel & E. Pelizzetti, Helv. Chim. Acta 15, 243 (1982).
- [2] E. Borgarello, E. Pelizzetti, W. Erbs & M. Grätzel, Nouv. J. Chim. 7, 195 (1983).
- [3] D.H.M.W. Thewissen, K. Timmer, M. Eeuwhorst-Reinten, A.H.A. Tinnemans & A. Mackor, Nouv. J. Chim. 7, 191 (1983).
- [4] D. Galizzioli, F. Tantardini & S. Trasatti, J. Appl. Electrochem. 4, 57 (1974).
- [5] H. Grüniger, B. Sulzberger & G. Calzaferri, Helv. Chim. Acta 61, 2375 (1978).
- [6] K.J. Hartig, J. Lichtscheidl & N. Getoff, Z. Naturforsch. A 35, 0233 (1980).
- [7] A. B. Ellis, S. W. Kaiser & M.S. Wrighton, J. Am. Chem. Soc. 98, 1635 (1976); ibid. 94, 6418 (1976);
 ibid. 94, 6855 (1976); G. Hodes, J. Manassen & D. Cohen, Nature 261, 403 (1976); B. Miller & A. Heller, Nature 262, 680 (1976); M. Neumann-Spallart & K. Kalyanasundaram, Ber. Bunsenges. Phys. Chem. 85, 1112 (1981).
- [8] J. Desilvestro, unpublished results.
- [9] S.N. Frank & A.J. Bard, J. Am. Chem. Soc. 99, 4667 (1977).
- [10] N. Konopik & F. Holzinger, Monatsh. Chem. 85, 140 (1954); N. Konopik, Monatsh. Chem. 84, 1243 (1953).